Local Area Water Removal Analysis of a Proton Exchange Membrane Fuel Cell under Gas Purge Conditions
نویسندگان
چکیده
In this study, local area water content distribution under various gas purging conditions are experimentally analyzed for the first time. The local high frequency resistance (HFR) is measured using novel micro sensors. The results reveal that the liquid water removal rate in a membrane electrode assembly (MEA) is non-uniform. In the under-the-channel area, the removal of liquid water is governed by both convective and diffusive flux of the through-plane drying. Thus, almost all of the liquid water is removed within 30 s of purging with gas. However, liquid water that is stored in the under-the-rib area is not easy to remove during 1 min of gas purging. Therefore, the re-hydration of the membrane by internal diffusive flux is faster than that in the under-the-channel area. Consequently, local fuel starvation and membrane degradation can degrade the performance of a fuel cell that is started from cold.
منابع مشابه
Experimental Study on a 1000W Dead-End H2/O2 PEM Fuel Cell Stack with Cascade Type for Improving Fuel Utilization
Proton exchange membrane fuel cells (PEMFCs) with a dead-ended anode and cathode can obtain high hydrogen and oxygen utilization by a comparatively simple system. Nevertheless, the accumulation of the water in the anode and cathode channels might cause a local fuel starvation degrading the performance and durability of PEMFCs. In this study, a brand new design for a polymer electrolyte membrane...
متن کاملThree Dimensional Computational Fluid Dynamics Analysis of a Proton Exchange Membrane Fuel Cell
A full three-dimensional, single phase computational fluid dynamics model of a proton exchange membrane fuel cell (PEMFC) with both the gas distribution flow channels and the Membrane Electrode Assembly (MEA) has been developed. A single set of conservation equations which are valid for the flow channels, gas-diffusion electrodes, catalyst layers, and the membrane region are developed and numer...
متن کاملThe Impact of Wettability on Effective Properties of Cathode Catalyst Layer in a Proton Exchange Membrane Fuel Cell
The produced liquid water in cathode catalyst layer (CCL) has significant effect on the operation of proton exchange membrane fuel cell (PEMFC). To investigate this effect, the transport of oxygen in CCL in the presence of immiscible liquid water is studied applying a two-dimensional pore scale model. The CCL was reconstructed as an agglomerated system. To explore the wettability effects, diffe...
متن کاملStudies on the SPEEK membrane with low degree of sulfonation as a stable proton exchange membrane for fuel cell applications
Sulfonated poly (ether ether ketone) (SPEEK) with a low degree of sulfonation (DS = 40%) was prepared for proton exchange membrane fuel cells (PEMFC). Poly (ether ether ketone) (PEEK) was sulfonated in concentrated H2SO4 under N2 atmosphere and characterized by the hydrogen nuclear magnetic resonance (H-NMR) technique. After preparation of the SPEEK polymer, the obtained polymer was dissolved i...
متن کاملNumerical Study of Curved-Shape Channel Effect on Performance and Distribution of Species in a Proton-Exchange Membrane Fuel Cell: Novel Structure
In this paper, a three-dimensional, single-phase proton-exchange membrane fuel cell (PEMFC) is studied numerically. Finite volume method was used for solving the governing equations and, consequently, the numerical results were validated by comparing them with experimental data, which showed good agreement. The main objective of this work is to investigate the effect of a novel gas channel shap...
متن کامل